Sonichem Leads £600K Funded Consortium for Sustainable Automotive Materials

CARMA - a consortium led by Sonichem to make bio-based automotive resins materials

Sonichem is leading a £600K Innovate UK-funded consortium to revolutionise the automotive industry with sustainable, bio-based materials.

It’s no secret that the transport sector is under significant pressure to decarbonise. This means that sustainable fuel substitutes and anti-pollution directives are understandably high up on the agenda for many vehicle manufacturers, and advances in these areas frequently appear at the top of our newsfeeds. However, it’s less well known that leaders in the industry are also actively seeking alternative methods of plastic and foam production that will enable them to meet the increasing demand for new vehicles while achieving net-zero environmental targets. Plastics have been used for an ever-increasing number of vehicle components over the last few decades – from dashboards, bodywork and seating to battery packs, fixings and thermal management systems in the latest electric vehicles – and typically account for 50 per cent of total car volume today. Unfortunately, the global transport sector generates over 350 million tonnes of plastic waste every year, since the majority of this plastic content is not recovered from end-of-life vehicles (1) and instead enters landfill or is incinerated, representing a significant environmental threat.

Decarbonising Transport: The Urgent Shift to Sustainable Automotive Materials

One emerging solution to this problem is biorefining, which offers a method of processing low-carbon feedstocks – such as lignin – into intermediate chemicals that can be made into renewable plastics for vehicles, replacing fossil-derived chemicals and helping to lower the carbon emissions of automotive production. Lignin is the world’s second-most abundant natural biopolymer (2) and presents a plentiful alternative to the finite, conventional petrochemical-based feedstocks currently used to produce plastics, resins and composites for the automotive industry. 

However, traditional biorefining technologies are not achieving their full potential, as they are inefficient, and produce degraded and chemically altered lignin, discouraging uptake for performance applications. Most of these methods also use energy-intensive processes, generating greenhouse gas emissions and, ironically, making them environmentally unsustainable. Commercial-scale biopolymer manufacturers produce low-grade lignin of high molecular weight, which limits their suitability for industrial applications (3) and the small number of UK-based suppliers for these carbon-efficient feedstocks is forcing manufacturers to import raw materials from abroad at higher price points.

Ultrasonic Biorefining: Unleashing High-Quality, Low Molecular Weight Lignin for Advanced Resin Applications

The challenges facing biorefining in the UK are what prompted us to develop a novel ultrasonic processing technology, Sonichem. Our unique patented technique uses ultrasound to fractionate woody biomass into hemicellulose sugars, microcrystalline cellulose and lignin, which can then be used as low-carbon feedstocks for platform chemicals used in a range of applications including pharmaceuticals, food and drink, cosmetics and, of course, vehicles. Our award-winning process efficiently extracts high-quality, low molecular weight lignin from UK-sourced Sitka spruce biomass, sawdust that is generated as a by-product of forestry operations, and denotes a major advance in biorefining. Our lignin is also highly soluble in organic solvents, sulfur free, highly reactive and resistant to antioxidants and UV, making it extremely versatile.

Sonichem’s CARMA Project: Leading the Charge in Net-Zero Automotive Materials

This game-changing technology is laying the groundwork for the shift away from current energy- and resource-intensive bioprocessing and chemical manufacturing approaches. In recognition of this, we have recently embarked on our groundbreaking CARMA – carbon-neutral agroforestry-derived resins to materials for automotive applications – project, in collaboration with an international consortium of industry leaders. Our consortium has been awarded almost £600,000 in funding through Innovate UK’s ‘Resource efficiency for materials and manufacturing’ (REforMM) collaborative research and development competition. The grant will cover over 70 per cent of the total estimated costs for this project, with the remaining amount being funded by several members of the consortium. Having substantial financial support will allow our multidisciplinary group of stakeholders to develop and commercialise bio-based feedstocks for the transport industry, with the aim of establishing a one-of-a-kind, resilient lignin supply chain within the UK that will support net-zero vehicle manufacturing. 

CARMA will be undertaken jointly with the Centre for Process Innovation (CPI), Scott Bader, the National Composites Centre (NCC), Polestar and SHD Composites, with each party bringing their own extensive expertise and technical knowledge to the table. CPI will support the optimisation and commercial scale-up of our existing Sonichem pilot plant, enabling us to establish a financially viable and consistent supply of lignin for the resin and composite manufacturing sector. Scott Bader will explore the use of this lignin feedstock in existing technology platforms, and will work with NCC, Polestar and SHD Composites to develop and test cost-effective and high-performance bio-derived resin formulations for automotive applications.

From Biomass to Bio-Based Resins: Sonichem’s Role in Reshaping the Automotive Sector

The CARMA project commenced in October 2023, to apply our proprietary Sonichem technology to automotive manufacturing as a first use case. We’re hopeful that this collaborative project will raise awareness of our promising technology, and create a route to the automotive materials market for our lignin and highlight its potential to decarbonise many industries. The partnership with several prestigious companies may also encourage cooperation with additional commercial players across multiple industries in the future, and will likely stimulate significant investment in the UK bioeconomy. We’re very much looking forward to what the next few years will bring for our trailblazing biorefining technique, so watch this space to keep up to date with our journey, every step of the way. 


1 Oakdene Hollins. 2021. Driving change: a circular economy for automotive plastic. 

2 Boerjan W, Ralph J, and Baucher M. 2003. Lignin Biosynthesis. Annual Review of Plant Biology, 54(1): 519–546.

3 Mariana M, et al. 2021. A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends. Journal of Materials Research and Technology, 15:2287–2316.

Leading the ripples of change

Adrian Black and Sonichem's executive team

Leading the ripples of change: Adrian Black’s journey from coding to cleantech

Sonichem was founded in 2007, and the company has been riding the waves of innovation and sustainability ever since. We have successfully overcome typical growth challenges, from building a dedicated operations team, making our technology scalable and developing a functioning pilot plant, and we are now seeking further investment, including a crowdfunding campaign on Seedrs,  to help make our future ambitions a reality. To the average investor, Sonichem’s success may appear to have been forged in science; after all, our ultrasonic biorefinery technology is what underlies our ability to convert forestry by-products into valuable bio-based chemicals. However, the significant commercial progress that we have experienced would not have been possible without the venture expertise and entrepreneurial acumen of our CEO, Adrian Black. This Q&A offers a glimpse into Adrian’s experience in building companies from the ground up, his approach to raising investments and overcoming challenges, and the past failures and successes that have taught him all about scaling a successful business.

Introducing Adrian Black, CEO of Sonichem

Adrian Black

I am the CEO of Sonichem, so my role is to fund and commercialise the brilliant technology and the team behind the company. However, I think that it is crucial to point out that I am not a chemist or a biologist. My career path has landed me in the clean tech industry, but I am a computer scientist and software developer at my core.

Career progression from software development to sustainable technology

I am extremely passionate about innovative technologies, and how they can make a difference in the world. Although I do not have any formal training in engineering or science, I have always been drawn to organisations in the STEM industry, whether it has been automotive businesses, online sales schemes or clean tech companies. Throughout the many stages of my career, I have worked on shaping my commercial skills, and business development is all about progression – building new enterprises, forming teams, raising investment and driving progression – no matter what field you find yourself in.

I took my first steps into commerce in the fast-paced automotive sector, where I designed systems and analysed data. The emergence of the internet was causing a major paradigm shift in the business world at the time, and I quickly accepted a CTO position at an online car dealership. Establishing an internet start-up at the very beginning of the technology boom was an extremely risky business move; although the company experienced some initial success – and was registered on the tertiary stock exchange – it unfortunately failed when the ‘dot-com’ bubble burst. This was a valuable learning experience, as the founder of the business abandoned ship at this point, leaving me to build it back up from the ground. It was at this stage in my career that I discovered a love for problem-solving and entrepreneurship, and this inspired me to pursue an MBA to deepen my knowledge in business strategy and finance, and hone my skills in critical thinking and leadership.

After a few more endeavours in the automotive sector – including consultancy projects for eBay motors and Autotrader, and a full-time position working for the Daily Mail Group to set up an online car sales platform – I was drawn to a completely different passion: tackling fraud. Mentored by one of the board directors of the Daily Mail Group at the time, I began to work with the police and security services to establish fraud forums in the major online sectors, and I was one of the founding members of an organisation called VSTAG. This planted the seed of an idea in my head, which grew to become a legal technology company, NorthRow, that is dedicated to developing systems to automatically detect financial, business and advertising scams. I successfully scaled the business to a Series A+ investment round as CEO, before deciding that it was time to move on to a new venture.

It was at this point that my previous mentor, David Dutton – who by now was Executive Chairman of Bio-Sep (now Sonichem) – asked me to join the company to help turn it from what was essentially a research and development project into an investable business. Although I only had a very superficial understanding of the technology and science behind Sonichem at the time, I could envision how it could be made to work at scale. In addition, fighting the global climate problem was an issue that was far greater than fraud, and I felt like the sustainable technology sector had huge potential for expansion. I therefore accepted the position, and that was how I became CEO of a clean tech company!

What, in your opinion, is the key to a successful technology business?

A successful technology business requires a skilled and knowledgeable team, a solid and well-thought-out business plan, and a flexible and forward-thinking approach that enables continuous development and progress. However, no company has ever risen to success without having to navigate difficult waters along the way, so I believe that resilience is another key aspect of success. As CEO of Sonichem, I am constantly refining my own knowledge, and equipping myself with the tools needed to navigate the dynamic challenges of the business world.

Looking back on Sonichem’s journey, what milestones stand out for you?

I was initially introduced to Sonichem at the start of 2021 and, although the company was backed by over 10 years of research, commercial progress was slow. It had not yet received any external investments, its first-generation pilot plant was not yet fully functioning, and it was even lacking a complete team of full-time employees. My goals were to establish a committed and permanent team, enhance the company’s infrastructure and begin to raise investments.


The first step in Sonichem’s growth was taking over the property that housed our pilot plant, and expanding it into a fully-equipped laboratory to carry out our downstream processing protocols in house. We also hired a complete team of chemists to improve the design of our ultrasonic reactor, and to refine and scale up the technology. Since then, we have applied for new patents for our updated technology, and even undergone a complete rebrand! A lot of work has gone on behind the scenes to make the business investment-ready, and we have already raised a significant amount of money – through venture capitalists, angel investors, projects, grants and consortiums – to provide our team with the resources they need. These are all milestones that have made Sonichem what it is today.

How can crowdfunding lead to collective growth at Sonichem?

Sonichem has already grown in leaps and bounds, but the purpose of our new crowdfunding initiative – which we are running through the investment platform Seedrs – is to allow us to continue to operate our pilot plant, and to fund the next stage in the company’s development. We are currently designing a large-scale commercial biorefinery, which will allow us to produce up to 15,000 tonnes per year of bio-based chemicals from forestry waste, making a significant difference in the clean tech sector. Most importantly, crowdfunding is a way for us to expand our reach and accessibility, allowing smaller investors who are interested in contributing to our environmental efforts to participate on the same terms as larger corporations. The global transition towards sustainability is creating vast opportunities in the chemicals industry, and we are well positioned to make a significant impact – and to offer possibilities for substantial investment returns to stakeholders.

Looking to the future, how can Sonichem capitalise on this forward momentum and solidify its position as a leader in the clean tech industry?

Sonichem is in a very good place to experience continued success: the forestry industry is expanding as demand for sustainable building materials soars, so the availability of byproducts such as woodchips and sawdust is rising. While there are other avenues that rely on these waste products – including cement production and the burning of pellets for energy – consumers are increasingly aware of the detrimental environmental effects of these activities, and companies are looking for more sustainable ways to use these readily available resources. At Sonichem, we have developed a clean and scalable way to take these low-grade byproducts and turn them into high-value bio-based chemicals. In addition, our technology is highly flexible, and it has the potential to make an impact in a wide range of industries that produce biomass, including the palm oil and sugar cane sectors. We have already been granted patents in 10 different markets around the world, demonstrating our potential for expansion.


All of these factors point to Sonichem’s growing potential to make waves in the chemicals industry, and our current crowdfunding initiative is the first step in our plan for the future, as we seek funding to drive our production of green chemicals and reduce society’s reliance on fossil fuels.

Dr Andrew West, Awarded Fellowship of the Royal Society of Chemistry

Dr Andy West with Sonichem Lignin

Congratulations to Dr Andrew West, Fellow of the Royal Society of Chemistry

Sonichem is celebrating the exciting news that our Chief Chemist, Dr Andrew (Andy) West, has been made a Fellow of the Royal Society of Chemistry (FRSC)! This prestigious award is testament to Andy’s long-time interest in practising and promoting sustainable chemistry in both industry and academia, helping to inspire the next generation of chemists. Here, Andrew talks about what piqued his interest in sustainable chemistry and how that developed into a stellar career.

Sustainable Chemistry from the beginning

I began my career studying at the University of Leicester, where I obtained a Master of Chemistry degree with first class honours, then a PhD in synthetic organic/inorganic chemistry in the field of recyclable heterogeneous and homogeneous catalysts. I became very interested in sustainability during this time, particularly in looking at how chemistry processes could be improved to make them less damaging to the environment. I went on to do a postdoc at Queen’s University Belfast, again looking at sustainability and exploring different ways of working that could potentially displace petrochemicals.

Bio-Based Chemicals and Sonichem

After my postdoc, I joined Melton Mowbray company Pera, a contract research organisation involved in a host of different sectors, including bio-based applications and chemistry. It was a very varied role, with opportunities to engage with a wide range of topics, from making bread out of barley instead of wheat, to producing chemicals from pig slurry. It also included a project with Sonichem – then known as Bio-Sep – which was to prove important to my career development a few years later. A move from industry to academia followed, when I joined Coventry University to investigate ways of making buildings more sustainable, looking at how the carbon footprint of concrete could be improved, and buildings designed to be disassembled at the end of their lifespan rather than demolished into a pile of rubble.

The persuasive argument for sustainable chemicals

A couple of decades ago, there was much less interest in sustainability, which was then considered a trailblazing concept. That has all changed in the intervening years and, today, people are far more aware of the impact mankind has on the planet, and the need to take action to minimise this. The public is starting to question the overuse of packaging and the air miles involved in the food supply chain, and businesses are all too aware of the ever-increasing price of oil. The challenge with any sustainable option is to provide credible solutions offering both environmental and financial benefits, as this encourages their adoption by businesses and individuals. They need to be convinced that any new solutions are not only sustainable, but also easy to implement and use, and affordable. In fact, switching from a petrochemical source to a biological one is not only more sustainable and environmentally friendly, but can also increase profit margins. Import duty is not payable on products made in the UK, and you don’t incur the extensive shipping costs associated with using materials from around the world. So, if a bio-based version of a product is 10 % more expensive, but you save 20-30 % in shipping and import duty, suddenly it’s worth doing. This is where companies like Sonichem come in.


I’d kept in touch as a consultant for Sonichem since my Pera days, so when the company wanted to develop its technology from early-stage research to a commercial reality and asked me to become its Chief Chemist, I was pleased to accept. Our process uses material that is on the doorstep – woody biomass that is available anywhere in the country where there is forestry. Instead of shipping material thousands of miles from, for example, Brazil or North America, we can make chemicals in the UK without the transport miles that would otherwise be part of the process. On top of that, forestry captures carbon in a very short period of time – 30 years as opposed to hundreds of thousands of years in fossil fuels. It’s a really interesting way of making sustainable chemicals.

The road to becoming a Fellow of the Royal Society of Chemistry (FRSC)

The Royal Society of Chemistry (RSC) has a range of membership categories that you progress through as you gain experience. You can join as an associate member while you are studying, and then apply to become a member once you have graduated. That opens up opportunities for further professional development, for example, to become a Chartered Chemist or Chartered Scientist, formally recognising your knowledge and skills – and how you apply them – and a commitment to maintaining high professional standards and continued learning. FRSC takes this a step further. As well as demonstrating your skills by working in the field for a period of time, you also need to show leadership and actively promote the chemical sciences. It’s about being an ambassador for the chemical sciences, getting involved with the RSC and giving something back.


One way of getting involved with the RSC is to join a special interest group. I sit on the committee of the Applied Materials Chemistry Group, a network of people with similar interests across the materials sector. These member networks form a large part of the RSC’s activities, opening up opportunities to share knowledge and experience with your peers, as well as to ask for advice. They are a great way of sharing knowledge; it’s amazing how much overlap there is between the various fields of chemistry, and the RSC is very good at getting people in different sectors talking to each other and solving common problems. There are also opportunities to collaborate with the RSC to co-host events such as the Chemical feedstocks for sustainable industry at Burlington House on the 1st of December, which Sonichem is jointly sponsoring.

Inspiring the next generation

Being a fellow is not just a job, it’s a vocation, a way of life. It’s something you do because you’re passionate about the subject and want to get the next generation interested in chemistry; a qualified chemist has a career for life, they will always be employable. The RSC’s Outreach programme is a great way of engaging with future scientists. There is a chemistry aspect to everything in life – the things you handle, the car you drive, the train you get on, the sandwich you eat – but when I visit a school and ask the students to name something where a chemist has had an impact on their life, the vast majority can’t. That all changes when I start asking questions: Did anybody have a painkiller this morning? Have you turned your mobile phone on? What do you think is in the screen? What’s in the battery? What’s the case made of? You’re wearing glasses, what are the frames made of? You’re wearing clothes, what’s the fabric made of? In a school lab, science is about mixing things in test tubes and seeing the reaction, and it’s amazing when they realise the impact that chemistry has in the real world.

Industry or academia?

I was told quite early on in my career that I would have to choose either an academic or an industrial career pathway, but that’s not been my experience at all. I’ve moved between the two without a problem, you just need to understand that the needs and challenges are different. Whatever the application, you can have an impact on the end product by just changing some very minor things in lots of cases. It’s about looking at what we are currently doing and asking how we can do it more sustainably. There is no need to choose between industry and academia – you can have both!

Help us Create Sustainable Ripples in the Chemicals Industry Through Crowdfunding

Sonichem Crowdfunding with Seedrs

Invest in bio-based chemicals and start a ripple of change

Petrochemicals permeate every nook and cranny of modern society, playing an integral role in the production of everything from plastics and pharmaceuticals to cosmetics and carbon fibres.(1) However, with the term ‘sustainability’ on everybody’s lips, the call to kick our fossil fuel habit has never been louder. It is the collective responsibility of industry giants, small companies and consumers alike to reduce their reliance on oil-based chemicals. Fortunately, Sonichem is making it easy to invest in the future of the planet, offering individuals and organisations the chance to become stakeholders and support our ultra-clean biorefinery technology that is transforming by-products from the forestry sector into sustainable, bio-based chemicals. We are seeking investment through crowdfunding, giving investors the opportunity to join us on our journey towards a cleaner, greener world.

An Exciting Investment Opportunity

Crowdfunding is all about coming together as a community to support exciting projects and businesses, and companies like Seedrsa prominent pan-European investment platform – make it easier than ever to get involved. Sonichem is giving investors the chance to buy shares* in our proprietary ultrasound biorefinery venture, by launching a crowdfunding campaign on Seedrs. This opportunity offers an easy way for eco-conscious individuals to become Sonichem shareholders, and prospective investors don’t need a hefty bankroll to participate. In fact, it is possible to secure a stake in Sonichem with as little as £10.

Why should you back our bio-based chemicals?

By investing in Sonichem, you’re committing to joining our mission to develop green, bio-based chemicals. In addition, shareholders will enjoy several benefits of ownership, such as a collective say in the decisions we make and the opportunity to share in our success. The Seedrs nominee structure means that the investment platform will generally exercise these rights on your behalf, while offering protection for your investment. The global transition towards sustainability is creating vast opportunities in the chemicals industry (2) so we are well positioned to make a significant impact, with the potential for substantial returns on your investment! Aside from financial benefits, there are so many good reasons to consider investing in Sonichem’s ultrasonic biorefinery technologies.

Help us to optimise the world’s natural resources

As a Sonichem shareholder, you can help us to repurpose the millions of tons of forestry and agricultural by-products that are either underused, wasted or destroyed each year. At the moment, only 55 percent of the wood from a felled tree emerges from the sawmill as construction timber, while the other 45 percent becomes woodchips and sawdust (3.) Downgrading the value of an already-dwindling source of raw materials already represents a significant waste of resources but, to make matters worse, these low-value by-products are often burnt, contributing to global CO2 emissions. With your investment, we can continue to transform the way that society handles woody biomass.

Join us in sending waves through the chemicals industry

Your investment in Sonichem will help us to expand our production of green chemicals from plant waste. Our patented biorefinery process harnesses both chemistry and ultrasound technologies to break down woody biomass into its three constituent components: sugars, cellulose and lignin. Ultrasound induces a powerful phenomenon called cavitation within the woody biomass, generating significant physical and chemical forces that turn every £1 of simple sawdust into £8 of sustainable, bio-based chemicals that, in turn, can displace finite petrochemicals in a wide range of materials and products.

Partner with us to benefit all stages of the supply chain

Maximising the value of our world’s green resources can benefit foresters and farmers, producers, and consumers alike. The forestry and agricultural sectors are under increasing pressure to minimise their impact on the environment, while increasing their outputs to feed and fuel an ever-growing population. In addition, producers are faced with looming net-zero goals, and are constantly seeking more sustainable materials to reduce their reliance on petrochemicals. Thankfully, consumers too are becoming increasingly environmentally-conscious; investing in our bio-based chemicals can provide them with the peace of mind that they are contributing to traceable, sustainable products with a low environmental impact.

Be a part of Sonichem’s success story

Now at the pilot stage, Sonichem has already received significant attention from investors and industry leaders. It was the winner of the Royal Society of Chemistry’s ‘Best Enabling Technology’ prize in 2021, and its technology was at the heart of a consortium that was awarded a £2.5 million grant to fund the building of its first-ever pilot plant. It has also won iCAST research awards, as well as a Scottish innovation award with Glasgow University, and is leading a consortium that has just been awarded a £600,000 Innovate UK collaboration grant to make net-zero materials that will replace plastics in car interiors. These excellent opportunities have been the driving force behind Sonichem’s past successes, but now, with the help of crowdfunding, we are looking to take our success one step further.

Our goal is to raise £1.1 million of investment to expand our pilot plant operations and fund the design of our first commercial biorefinery, to scale up our production of green chemicals to thousands of tonnes per year. Our future plans include international licensing of our technology, which will allow our process to break down waste from sugarcane and palm oil production into sustainable chemicals. Every little helps, so visit our Seedrs crowdfunding page today to see how your investment can help to create a greener, more sustainable future for us all.

* As with all investments, don’t invest unless you’re prepared to lose all the money you invest.


  1. The Future of Petrochemicals. 2018. International Energy Agency. Accessed: 26 October 2023. Available at:
  2. Bio-based platform chemicals market size. 2023. The International Market Analysis Research and Consulting Group. Accessed: 26 October 2023. Available at:
  3. Antwi-Boasiako, C. and Acheampong, B. 2016. Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass and Bioenergy, 85, 144-152. doi:10.1016/j.biombioe.2015.12.006.

Seedrs Limited is authorised and regulated by the Financial Conduct Authority (No. 550317). © Seedrs Limited 2019. All rights reserved. Seedrs is a registered European Community trademark (No. 008771537) and registered United States service mark (No. 85423072) of Seedrs Limited, a limited company registered in England and Wales (No. 06848016), with registered office at Stylus Building, 112-116 Old Street, London, England, EC1V 9BG, United Kingdom, VAT No. GB 208 3065 32. is a website owned and operated by Seedrs Limited.

How Nature is Giving a New Face to Cosmetics – Speciality Chemicals Article

Speciality Chemicals Magazine October, with Sonichem Article

Our commercial director discusses the potential application of bio-based chemicals produced from the ultrasonic Sonichem biorefinery process in cosmetics. The bio-based chemicals cellulose, lignin and hemicellulose sugars are extracted from sawdust an abundant low value by-product of sawmills. Each of these green chemicals can be a sustainable alternative to petrochemicals used in the production of cosmetics and their packaging. Cosmetic manufacturers are increasingly looking to reduce their carbon impact and use traceable, sustainable materials in their products.

This article was published in the September edition of Speciality Chemicals Magazine.

Launched 38 years ago, Speciality Chemicals Magazine is the leading publication dedicated to the fine and speciality chemicals industry.

Ho w nature is giving face to cosmetics; speciality chemicals magazine article

Bio-Sep Unveils New Brand Identity Sonichem

Sonichem new brand from Bio-Sep

The team at Bio-Sep are excited to reveal a major rebranding to Sonichem. This rebranding, effective immediately, is inspired by our core proprietary technology, which focuses on the ultrasonic processing of low-value woody biomass to derive high-value green chemicals.

Sonichem’s new mission and vision statements bolster the company’s contribution to a circular economy where humanity can sustainably meet its chemical needs by maximising the value of renewable resources.

Our new logo, featuring a ripple effect, symbolises both the ultrasonic waves essential to our process and our aim to instigate meaningful sustainability changes in the supply chains of the chemical and forestry sectors.

Other elements of the brand evolution include a new colour palette that represents a modern green chemicals company, alongside new imagery to reflect sonication effects and the hidden green chemicals naturally contained within biomass. 

Adrian Black, CEO at Sonichem, announced: “We are delighted to embrace a fresh identity that demonstrates how our unique, low-energy biorefinery process is sending ripples through the chemical industry. Rebranding to Sonichem reflects the next stage in our growth journey as we supply our partners across multiple sectors with high-quality biochemicals extracted using our ultrasonic technology.’

This change is limited to our brand, and Sonichem Technologies Limited is our new official registered name. All our team and contact details remain the same, though is now our primary domain name for emails and we invite you to explore our refreshed brand throughout this new website

Looking at Superior Lignin

Sonichem Lignin resin extracted from sawdust

Looking at lignin in a new light

It’s well known in the biorefinery community that lignin is an untapped renewable resource of useful chemical building blocks, but creating value out of this incredibly long polymer has, until now, been a chemist’s nightmare. Wouldn’t it be great if there was a more manageable lignin preparation to start with? Read on to learn about the low molecular weight option that Sonichem’s ultrasonics can conjure up.

Lyrical about lignin

First of all, let’s dig a little deeper into lignin. One thing for sure is that it’s abundant, making up around 15 to 30 % of the dry weight of plant cell walls 1. On top of that, it’s a non-toxic, renewable and biodegradable source of small aromatic compounds that could potentially replace many fossil fuel-derived chemicals in the high value materials, coatings, cosmetic, food and pharmaceutical industries. In 2019 alone, the global lignin market was valued at an astounding figure of over $900 million, and it is expected to continue growing.2

A little lignin goes a long way

However, looking more closely at the current pipelines feeding into lignin production, it’s clear that industries are not making the most out of this natural polymer, and many higher value applications are being overlooked. For example, the pulp and paper industry generates over 50 million tons of what is termed ‘Kraft lignin’ every year, but most of this is burnt as low value fuel – causing serious environmental pollution – and only 2 % goes on to create high value chemicals.3 This is largely because Kraft lignin is hard to process, a stumbling block that is preventing it being used to make materials such as carbon fibres, phenolic resins, binding and dispersing agents, vanillin, cement additives and more.4

The lingering problem with bulk lignin   

The processing challenges associated with Kraft lignin include huge and variable molecular weights, low reactivity, poor solubility in common solvents, and 2-3 % sulfur levels that severely limit its use.5 This means that a tedious series of steps is required – known as ‘lignin upgrade’ – to break up the long polymers into lower molecular weight monomers and oligomers, improve the reactivity and solubility by chemical modification, and remove any sulfur. This complex and unwieldy process uses up energy and produces waste, and is neither economical nor practical for dealing with high volumes, but this is where Sonichem’s ultrasonic processing technology fits in.

This is not just lignin, this is Sonichem's superior lignin.

Sonichem’s proprietary ultrasonic process break the chemical bonds in long lignin polymers, resulting in a novel alternative that has an exceptionally low molecular weight of 1,000 gmol-1 – four times smaller than typical Kraft preparations – enhanced reactivity, is soluble in a range of common solvents including ethanol, and is sulfur-free. This ground-breaking technology has unleashed the true potential of a natural asset; the resulting superior lignin can be processed with greater ease into a seemingly endless list of materials, resins, coatings and chemical additives, giving them hydrophobic, UV blocking, flame retardant and antimicrobial properties, and, ultimately, offering chemists a sustainable alternative to fossil fuels.


  1. Higuchi T, Chang HM, Kirk TK. Recent advances in lignin biodegradation research. Published online 1983.
  2. Lignin Market Size & Share | Industry Report, 2020-2027. Accessed January 25, 2023.
  3. Dexter GN, Navas LE, Grigg JC, et al. Bacterial catabolism of acetovanillone, a lignin-derived compound. Proc Natl Acad Sci U S A. 2022;119(43):e2213450119. doi:10.1073/PNAS.2213450119/SUPPL_FILE/PNAS.2213450119.SAPP.PDF
  4. Sinha AK, Sharma UK, Sharma N. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. Int J Food Sci Nutr. 2008;59(4):299-326. doi:10.1080/09687630701539350
  5. Evdokimov AN, Kurzin A v., Fedorova O v., Lukanin P v., Kazakov VG, Trifonova AD. Desulfurization of kraft lignin. Wood Sci Technol. 2018;52(4):1165-1174. doi:10.1007/S00226-018-1014-1/METRICS

Hiring a Project Manager

Project Manager Role

We are looking for an experienced Project Manager to be responsible for leading project management for the design and delivery for our First-Of-A-Kind Commercial Plant (FOAK CP) and projects involving the expansion and development of the Sonichem (previously known as Bio-Sep) Pilot Plant Facility located at Melton Mowbray.

Reporting to the Principal Process Engineer, you will provide the technical leadership for project management and be the focal point for all engineering projects.

Sonichem (previously Bio-Sep) is a clean technology company based in Melton Mowbray, Leicestershire. We have developed a patented sustainable, ultrasonic biorefining technology that transforms woody biomass, the by-product of forestry and agriculture, into high value bio-based chemicals with a wide range of applications. This is a fantastic opportunity to join an organisation with ambitious plans in the sustainable biorefining sector.

Why Sonichem (previously Bio-Sep)

Innovation: Be a part of cutting-edge technology development that is shaping the future of sustainable bio-based chemicals.

Growth Opportunities: Join a team with ambitious plans in the sustainable biorefining sector.

Supportive Environment: Collaborate with an enthusiastic, diverse and skilled team committed to excellence.

Bio-Sep is not just a company; it’s a vision for a greener future. If you are a dynamic, adaptable, analytical thinker with a passion for driving projects to success, we want to hear from you.

Key Responsibilities

Work closely with the Principal Process Engineer to ensure the highest calibre of technical and commercial delivery on all projects, and to help and support the Principal Process Engineer as required.

Develop and implement an in-house Engineering Project Management System based on best practices and industry standards.

Develop a project excellence model to ensure consistently excellent project delivery for the company including project management based KPIs.

Act as the focal point and lead with Engineering Contractors, Original Equipment Manufacturers, Engineering Design Contractors and EPCs.

Support the Principal Process Engineer in the pre-feasibilty and concept phase of the FOAK CP and preparation of the documentation suite for tendering the FEED and EPC.

Be the key lead in determining the tender/contract strategy for the EPC contracting award for the FOAK CP including the scoring and evaluation of submitted bids.

Develop, agree and approve the project management strategy with the potential EPC Company for delivery of the FOAK CP. Ensuring the supply chain is fit for purpose, selection of competent and reliable suppliers, elimination of single points of failure and systems are in place to monitor and record supplier performance.

Be the project management lead for grant funded collaborative R&D projects ensuring compliance to funding requirements.

Ensure company financial controls are adhered to across all sanctioned projects.

Ensure project deliverables are completed and presented in a professional manner, to include quality of information, written, drawn and verbal.

Support the executive team in research grant applications.

Support the CEO in business and investment project management activities.


You will be qualified in a relevant Engineering and/or Project Management discipline.

Professional qualification with relevant engineering and/or project management bod

Circa 10 years’ experience gained in an engineering project management environment, ideally with an EPC or projects department in the process industry.

Competent and experienced in using MS Project.

Experience of managing grant-funded projects and their reporting requirements is desirable.

This role allows for a hybrid working arrangement.

Please apply via our Linkedin application process or send an email with your CV and a cover letter to

We are Hiring a Lab Supervisor

Based at the pilot plant site at Melton Mowbray, the Lab Supervisor will have day-to-day responsibility for leading a small team of chemists to carry out R&D and QC analysis of samples from our pilot plant, kilo-scale reactor and downstream separation and purification equipment. Working with our Chief Chemist, you will support development of R&D plans and workload scheduling for the chemistry delivery team and manage safe and productive operation of the site laboratory.

Sonichem is a clean technology company based in Melton Mowbray, Leicestershire. We have developed a sustainable, ultrasonic biorefining technology that transforms woody biomass, the by-product of forestry and agriculture, into high value biochemicals with a wide range of applications. After a period of intense R&D activity, we are now ready to scale up and commercialise our technology and we’re seeking a talented Laboratory Supervisor to join our growing team.

Based at the pilot plant site at Melton Mowbray, the Laboratory Supervisor will have day-to-day responsibility for leading a small team of chemists to carry out R&D and QC analysis of samples from our pilot plant, kilo-scale reactor and downstream separation and purification equipment. Working with our Chief Chemist, you will support development of R&D plans and workload scheduling for the chemistry delivery team and manage safe and productive operation of the site laboratory.

Reporting to the Chief Chemist, your main duties and responsibilities will be to:

  • schedule workloads and work as part of the chemistry team to develop and deliver research plans and QC/analytical data
  • support the development of other chemistry team members and the capabilities of the laboratory
  • lead on all aspects of health and safety in the laboratory including COSHH and risk assessments
  • lead on good data recording, calibration and SOPs
  • manage training logs and equipment servicing and keep good records
  • support the design of trial plans for current and future research and lead on data gathering, analysis and process optimisation
  • accurately record all results, deviations and observations to support process development
  • work with the Chief Chemist and Marketing Director to support development of robust pathways to commercialisation for Sonichem products
  • work in an agile and flexible manner, responding to changing company and customer needs
  • support other activities to grow and develop the company and its technology as appropriate

Person specification

  • Experience of managing a laboratory, including leading on H&S requirements, data recording, GLP, facilities maintenance and equipment operation and troubleshooting
  • Experience of leading a small team in a laboratory setting
  • Qualified to PhD level in chemistry and/or with 2+ years’ experience of supporting the development and delivery of R&D plans
  • Member of the Royal Society of Chemistry preferred
  • Experience of lignocellulosic chemistry and/or biomass processing preferred but not essential
  • Experience of carrying out trial procedures and using the results to solve problems and inform future research and scale-up.
  • Self-starter, able to plan the time and resources of their team to achieve desired goals, whilst managing multiple projects over different timescales with minimal supervision
  • Practical, active person with excellent problem-solving skills
  • Confident at interacting with all levels of seniority both within the company and externally
  • Excellent written and oral communication skills
  • Confident at handling and recording large volumes of data
  • Keen to learn new skills and support Bio-Sep to grow its business through access to accurate data

If this sounds like you and you share our vision of a sustainable future then apply now. Please send an email with a cover letter and your CV to